
Supplementary Materials for:
Observation of flat-band and band transition in the synthetic space

Guangzhen Lia,†, Luojia Wanga,†, Rui Yea, Shijie Liua, Yuanlin Zhenga,b, Luqi Yuana,*,
Xianfeng Chena,b,c,*

aState Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and
Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
bShanghai Research Center for Quantum Sciences, Shanghai 201315, China
cCollaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan
250358, China

Keywords: synthetic dimensions, ring resonators, dynamic modulation, flat band.

*Luqi Yuan, yuanluqi@sjtu.edu.cn ; Xianfeng Chen, xfchen@sjtu.edu.cn
†Guangzhen Li, Luojia Wang. These authors contribute equally to this work.

1 Theory of the band structure measurement in two rings

Here, we provide the detailed derivations of the transmission spectra recorded from the drop-port

output of the specific excited ring, which are then used to obtain the time-resolved band structures

for the two cases A in→ A out and B in→ B out.

Following the treatment in Refs. 24-25, we start with considering the Hamiltonian in Eq. (1)

in the main text. One can get the coupled amplitude equations for A in → A out in the interaction

picture by taking the rotating-wave approximation (RWA), which results in

˙̃va,n =(i∆ω − γ)ṽa,n − iκṽb,n − ig
(
ṽc,ne

iϕ + ṽc,n−1e
−iϕ

)
+ i

√
γAS

A
ine

i(n−n0/2)Ωt,

˙̃vb,n =(i∆ω − γ)ṽb,n − iκṽa,n,

˙̃vc,n =(i∆ω − γ)ṽc,n − ig
(
ṽa,ne

−iϕ + ṽa,n+1e
iϕ
)
+ i

√
γAS

A
ine

i(n+1/2−n0/2)Ωt,

SA
out =− i

√
γAe

−i∆ωt
∑
n

(
ṽa,ne

−iωnt + ṽc,ne
−iωnt−iΩt/2

)
,

(S1)

where ṽa,n, ṽb,n, and ṽc,n are the amplitudes of the photon states of the frequency modes An, Bn,

and Cn. SA
in is the envelope of the laser source through the input port of ring A with an input

frequency ω = ω0 + n0Ω/2 +∆ω. Here, we define n0 to distinguish the modes An and Cn, where

n0 = 0 and n0 = 1 refer to the situations of the input field near the reference frequencies ω0 and

ω0 + Ω/2, corresponding to modes An and Cn separated by Ω/2 along the frequency dimension,
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respectively. We then transform the amplitudes of the modes into the kf space by defining

ψA
kf

=
∑
n

ṽa,ne
−inΩk, ψB

kf
=

∑
n

ṽb,ne
−inΩk, ψC

kf
=

∑
n

ṽc,ne
−i(n+1/2)Ωk, (S2)

which gives

ψ̇A
kf

=(i∆ω − γ)ψA
kf

− i2g cos (Ωkf/2 + ϕ)ψC
kf

− iκψB
kf

+ i
√
γAS

A
ine

−in0Ωt/2
∑
n

e−inΩ(kf−t),

ψ̇B
kf

=(i∆ω − γ)ψB
kf

− iκψA
kf
,

ψ̇C
kf

=(i∆ω − γ)ψC
kf

− i2g cos (Ωkf/2 + ϕ)ψA
kf

+ i
√
γAS

A
ine

−in0Ωt/2
∑
n

e−i(n+1/2)Ω(kf−t),

(S3)

and the amplitude of the output field becomes

SA
out = −i√γAe−iω0t−i∆ωt

[
ψA
kf
(t) + ψC

kf
(t)

]∣∣∣
kf=t

. (S4)

By using the definition of column vectors
∣∣ψkf

⟩
=

(
ψA
kf
, ψB

kf
, ψC

kf

)T

and
∣∣SA

in

⟩
=

(
1, 0, e−iΩ(kf−t)/2

)T ,

we can rewrite Eq. (S3) into a compact form as

[
∆ω + iγ −

(
Hkf − i∂t

)] ∣∣ψkf

⟩
+
√
γA

∑
n

e−inΩ(kf−t)e−in0Ωt/2
∣∣SA

in

⟩
= 0, (S5)

where Hkf is the Hamiltonian in kf space given by Eq. (3). The corresponding eigenvalues and

eigenstates satisfy Hkfψkf ,j = εkf ,jψkf ,j for the case of RWA, which are shown in Eqs. (4)-(5).

For a more general case of modulation without using the RWA, Hkf is time-dependent with

the period of T = 4π/Ω. At steady state, the eigenstates of Hkf form a complete basis for ex-

panding ψkf (t). By taking the inner product of Eq. (S5) with
⟨
ψkf ,j

∣∣, defined as ⟨f(t)|g(t)⟩T =

(1/T )
∫ T

0
dtf ∗(t) · g(t), we obtain the expansion coefficients of the output field in terms of the
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eigenstates as

⟨
ψkf ,j

∣∣ψkf

⟩
T

=
−√

γAS
A
in

∆ω + iγ − εkf ,j

1

T

∫ 4π
Ω

0

dt
∑
n

e−inΩ(kf−t)e−in0Ωt/2
[
ψA ∗
kf ,j

(t) + e−iΩ(kf−t)/2ψC ∗
kf ,j

(t)
]

=
−√

γAS
A
in

∆ω + iγ − εkf ,j

1

T

∫ 4π
Ω

0

dt

{
T

2

[
δ (kf − t) + δ

(
kf +

2π

Ω
− t

)
+ δ

(
kf −

2π

Ω
− t

)]
e−in0Ωt/2

[
ψA ∗
kf ,j

(t) + e−iΩ(kf−t)/2ψC ∗
kf ,j

(t)
]}

=
−√

γAS
A
in

∆ω + iγ − εkf ,j

1

2

[
e−in0Ωkf/2

(
ψA ∗
kf ,j

+ ψC ∗
kf ,j

)
+ e−in0Ωkf/2+in0π

(
ψA ∗
kf ,j

− ψC ∗
kf ,j

)]
.

(S6)

If n0 = 0, one can get the output field form the drop-port of ring A

SA
out = iγAS

A
ine

−iωt
∑
j

(
ψA
kf ,j

+ ψC
kf ,j

)
ψA ∗
kf ,j

∆ω + iγ − εkf ,j

∣∣∣∣∣∣
kf=t

. (S7)

On the other hand, one can also have the output field for n0 = 1, which is

SA
out = iγAS

A
ine

−iωt
∑
j

(
ψA
kf ,j

+ ψC
kf ,j

)
ψC ∗
kf ,j

∆ω + iγ − εkf ,j

∣∣∣∣∣∣
kf=t

. (S8)

Equation (S7)-(S8) indicate that the output amplitude at time t is exclusively determined by the

eigenvalues and eigenstates from the band structure of the synthetic one-dimensional Lieb lattice.

Under the conditions of γ ≪ Ω/2 and g < Ω/4, only the term closest to the input frequency

ω contributes significantly to the sum. Then the normalized time-resolved transmissions can be

approximately given by

TA
out (t = kf ; ∆ω) =

γ2A

∣∣∣ψA
kf ,j

∣∣∣2 ∣∣∣ψA
kf ,j

+ ψC
kf ,j

∣∣∣2
(∆ω − εkf ,j)

2 + γ2
,

TA
out (t = kf ; ∆ω + Ω/2) =

γ2A

∣∣∣ψC
kf ,j

∣∣∣2 ∣∣∣ψA
kf ,j

+ ψC
kf ,j

∣∣∣2
(∆ω − εkf ,j)

2 + γ2
.

(S9)

Similarly, for the case of B in → B out, one can obtain the input/output coupled amplitude
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equations as
˙̃va,n =(i∆ω − γ)ṽa,n − iκṽb,n − ig

(
ṽc,ne

iϕ + ṽc,n−1e
−iϕ

)
,

˙̃vb,n =(i∆ω − γ)ṽb,n − iκṽa,n + i
√
γBS

B
ine

i(n−n0/2)Ωt,

˙̃vc,n =(i∆ω − γ)ṽc,n − ig
(
ṽa,ne

−iϕ + ṽa,n+1e
iϕ
)
,

SB
out =− i

√
γBe

−i∆ωt
∑
n

ṽb,ne
−iωnt.

(S10)

Further, we convert Eq. (S10) into the kf space

ψ̇A
kf

=(i∆ω − γ)ψA
kf

− i2g cos (Ωkf/2 + ϕ)ψC
kf

− iκψB
kf
,

ψ̇B
kf

=(i∆ω − γ)ψB
kf

− iκψA
kf

+ i
√
γBS

B
ine

−in0Ωt/2
∑
n

e−inΩ(kf−t),

ψ̇C
kf

=(i∆ω − γ)ψC
kf

− i2g cos (Ωkf/2 + ϕ)ψA
kf
,

SB
out =− i

√
γBe

−iω0t−i∆ωt ψB
kf
(t)

∣∣∣
kf=t

.

(S11)

Using the column vector of
∣∣SB

in

⟩
= (0, 1, 0)T , the input/output equations in Eq. (S11) become

[
∆ω + iγ −

(
Hkf − i∂t

)] ∣∣ψkf

⟩
+
√
γB

∑
n

e−inΩ(kf−t)e−in0Ωt/2
∣∣SB

in

⟩
= 0. (S12)

Then one gets the steady-state output field from the drop port of ring B

SB
out = iγBS

B
ine

−iωt
∑
j

ψB
kf ,j

ψB ∗
kf ,j

(1 + ein0π)/2

∆ω + iγ − εkf ,j

∣∣∣∣∣
kf=t

, (S13)

and the normalized drop-port transmission for n0 = 0 is

TB
out (t = kf ; ∆ω) =

γ2B

∣∣∣ψB
kf ,j

∣∣∣4
(∆ω − εkf ,j)

2 + γ2
. (S14)

Therefore, We obtain the drop-port transmissions for the two cases, where Eq. (S9) and Eq. (S14)

are Eqs. (7)-(8) and Eq. (6) in the main text, respectively.
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2 Experimental setup

The frequency of the laser source can be finely tuned over 30 GHz by applying an external ramp

signal to its frequency modulation input, with the central wavelength located at 1550.92 nm. Near

50% of the laser source is sent to an acousto-optic modulation (AOM) for frequency shift and

heterodyne beating with the drop-port output. In each ring, a 2 × 2 fiber coupler couples 1%

of the remaining 50% laser source to the ring resonator, after which a polarization controller is

used to adjust the polarization of laser circulating in the ring. To achieve a high quality factor

for the resonator, a semiconductor optical amplifier (SOA) is used to compensate the loss in the

ring with a maximum gain of 10 dB. A dense wavelength division multiplexing with a central

wavelength of 1550.92 nm (international telecommunication union channel 33) is used to filter the

amplified emission noise from SOA. Ring A undergoes dynamic modulation by a lithium niobate

EOM with a 10 GHz bandwidth, which is driven by an arbitrary waveform generator with 200

MHz bandwidth. A 1 × 2 fiber coupler couples 0.5% of the signal out of the ring, which is then

amplified by an erbium-doped optical fiber amplifier (with maximum gain of 12 dB) to boost the

signal-to-noise ratio before it gets detected by a fast InGaAs photodiode (850 to 1650 nm with 10

GHz bandwidth) and sent to the oscilloscope (5 Gsamples/s with 1 GHz bandwidth). For the flat

band structure measurement (Fig. 3 and Fig. 4 in the main text), we disconnect the AOM path, and

only connect it for the resonant mode observation (Fig. 5 in the main text). In addition, we also

place an EOM in ring B just for calibrating the length of ring B, which is not shown in Fig. S1.

The lengths of the two rings need accurate calibration for stabilizing the connectivity between

the resonant modes to construct the synthetic Lieb lattice. We first separately measure the FSRs of

ring A and ring B by disconnecting the 70:30 fiber coupler. For each ring, we vary the modulation

frequency by linearly sweeping the input frequency until the modulation sidebands fully overlap

with the resonant modes. We then adjust fiber’s length to make up for the required FSR difference.

One can also place an optical delay in the ring to finely tuning the length. Noting that the fiber

coupler used to couple the two rings together in Fig. S1 keeps 70% of the light power remained

in the excited ring and the left 30% coupled to the other ring no matter which ring we choose to

excite, which gives the same coupling strengths for both cases.
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Fig S1 Experimental setup. EOM: electro-optic phase modulator. AOM: acousto-optic modulation. SOA: semi-
conductor optical amplifier. AWG: arbitrary waveform generator. EDFA: erbium-doped optical fiber amplifier. PC:
polarization controller. DWDM: dense wavelength division multiplexing. PD: photodiode. Inserted: sketches of B
in→B out and A in→A out.
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Fig S2 (a) Experimentally measured band structure and (b) transmission spectrum of Fig. 2(c1) and 2(c3) in the
main text. (c) Vertical slices of the band structure in (a) at times 0, π, and 2π, respectively. (d) Enlarged transmission
spectrum of (b).
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Fig S3 (a) Simulated mode spectra by adding long-range couplings for the case of B in→B out with varied coupling
strength g′, where g = κ = 0.06Ω and γ = 0.03Ω. (b) The corresponding mode distributions of (a) with input
frequency detuning located at the flat band (∆ω = 0).
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